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A Molecular Dynamics Study of a Reversed-Phase Liquid

Chromatography Model

Joseph T. Slusher and Raymond D. Mountain

Physical and Chemical Properties Division

National Institute of Standards and Technology

Gaithersburg, MD 20899

We describe a molecular dynamics simulation study of a model of the reversed-phase

chromatographic system. The model consists of a slab of aqueous solvent sandwiched

between two walls having attached Cg hydrocarbon chains at a surface coverage of 5.09

/imol/m^ or 32.6 A^/chain. Long-ranged Coulombic interactions are taken into account

using the Ewald sum method of Rhee, et al. [Phys. Rev. B, 40, 36, 1989]. The density,

energy, pressure, and solvent orientation profiles are computed as a function of distance

from the walls. The presence of an organic co-solvent methanol or acetonitrile at 30.8

mole % has little effect on the chain structure, which is largely collapsed against the

walls. We also estimate the change in residual Helmholtz free energy along the pore

width for a methane solute in the acetonitrile/water system, which indicates that a

substantial portion of the free energy driving force for retention occurs in an organic-

rich layer of solvent adsorbed to the hydrocarbon phase.

1 Introduction

The retention mechanism in reversed phase liquid chromatography (RPLC) is an important

problem in measurement technology which has received considerable attention in recent

years [1, 2]. A number of experimental methodologies have been brought to bear on the

problem with varied and sometimes conflicting results [3j. The continuing interest in this

area reflects the substantial difficulty in understanding the behavior (and thus our ability to

predict/optimize) in these systems, which arises, in large part from the inherent complexity

in RPLC systems. One must address, in addition to state variables {i.e. temperature,

pressure, flow rate), additional variables such as ligand density, chain length, and mobile

phase composition, as well as the nature of the solute. Other important quantities, which

are often unknown, are the surface coverage of exposed silanol groups [4, 5, 6] and the

uniformity in surface density of the stationary alkyl chains [7]. A further difficulty in the

analysis arises in the use of bulk thermodynamic treatments to describe a situation which is

inherently interfacial [8].

Some of the major questions which have been addressed have concerned the role of

solvophobic vs. chain-solute interactions [9], the relative importance of partitioning vs.

adsorption [10], the degree of solvent penetration into the stationary phase [11], and the

eflfect of the presence of microheterogeneities [12, 13] or ‘layering’ in mixed-solvent mobile

phases [14]. Solute shape selectivities in relation to bonded-phase densities have also been

addressed experimentally [11, 15, 16].
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A fruitful area of inquiry has dealt with the underlying bases for the different behavior

seen in two commonly used RP mobile phases, aqueous methanol and aqueous acetonitrile.

Here, thermodynamic measurements from van’t Hoff plots of the mobile-phase composition

dependence of the enthalpy {AH°) and entropy (A5°) of solute transfer (from mobile to

stationary phases) show marked qualitatively different characteristics between the two sys-

tems. For instance, with aromatic solutes, several groups [12, 17, 18] have found that both

AH° and AS° decrease monotonically with increasing water volume fraction {9^) for the

methanol/water system. In acetonitrile/water syterns, AH° is independent of 9yj while AS°
increases with increasing 9^ for 9^ < 0.5. As a decrease in AH° indicates an increasing

energetic preference while a decrease in AS° indicates a decreasing entropic preference for

the stationary phase, these experiments suggest, for the acetonitrile system, an entropically

governed retention process for 9^ < 0.5. The molecular picture which emerges from the

experimental results is one in which the solute is solvated by acetonitrile-rich pockets which

exist in the water-poor mobile phase [12, 19, 20, 21]. Hanai et al have found similar trends

in AH° and AS° for various other non-polar solutes [22]. The microheterogenious nature

of acetonitrile/water mixtures at ambient temperatures has been indicated experimentally

via Raman spectroscopy [23] as well as inverse Kirkwood-Buff studies [24], and is not sur-

prising in view of the rather high upper critical solution temperature (272 K) [19] and the

expectation of strong dipole-dipole interactions between acetonitrile molecules due to their

linear shape and the relatively large dipole moment of acetonitrile (3.9 D) [25]. In contrast

to the acetonitrile/water system, enthalpic contributions to solute transfer are observed to

dominate in the methanol/water systems [12]. Such comparitive studies have contributed

greatly to our overall understanding of the retention process in RPLC.
An important piece of information related to the retention mechanism in RPLC is the

distribution of the solvent species in the vicinity of the stationary phase, where layering of

both the alkyl chains and the mobile phase components is generally acknowledged. The
preferential adsorption or intercalation of the organic component has been implicated in

significant changes in the ordering of the stationary phase [13, 26]. As it relates to A5°, such

relative ordering effects in the stationary phase are likely to have a strong influence on the

retention driving force [27, 28]. In this regard, there are once again distinctly different mobile

phases-stationary phase association characteristics between aqueous methanol and aqueous

acetonitrile mobile phases [13, 29]. Here, experimental evidence suggests that association

between methanol and the stationary phase increases weakly with bulk methanol solvent

composition, whereas that of acetonitrile saturates early and remains fairly constant. These

authors also found differences in the association of water with the stationary phase between

the two systems.

Molecular dynamics (MD) simulations offer the interesting possibility of addressing in a

detailed way some of the molecular inferences suggested by the experimental measurements,

under the assumption that the model system correctly captures the key features of the

actual system. Recently, Klatte and Beck [30] used MD simulation to probe the driving

forces that govern the retention process of a small non-polar solute (methane) in a model

system of 50/50 (v/v) water/methanol with a Cig stationary phase. Their results, though

not unambiguous, support an interfacial rather than a bulk partitioning view of the retention

process, where the bulk of the driving force is located at a methanol-rich layer at the interface.

In the present work, we develop a similar MD model of the RPLC system in which we

compare the solvation structure in a pure water system, a methanol/water system, and an

acetonitrile/water system. The long-ranged goal of this work is to examine some of the
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features of these systems responsible for the retention mechanism, and to gain insight into

the molecular picture of the microscopic differences in solvation structure among the three

systems. It should be noted that the current approach ignores the nonequilibrium nature

of an actual chromatographic process by disregarding the flow field and its effects. This

approach is necessary because the time-scale disparity between a typical flow velocity and

the currently achievable length of a MD simulation is very large so that only simulations

at equilibrium conditions are possible. However, insight into the equilibrium driving forces

for retention and the mechanisms for solute selectivity is a foundational step toward a full

understanding of solute retention in RPLC.
In the following section, the system model is described followed by a discussion of the

technical details. In section three we discuss the computation of changes in chemical potential

of an infinitely dilute solute as a function of distance from the wall. And finally, simulation

results are presented for the ^-dependence of the density, energy, pressure, solvent orientation

and free energy, and some chain structure results.

2 Models and Simulation Methodology

The system under study is a quasi-2-dimensional (2DP) one, with periodicity in the x and

y directions but finite in the 2 direction, which is bounded by two ‘walls’ representing the

silica surface of the pore. The total potential energy of the system consists of intermolecular

contributions from solvent-solvent, solute-solvent, solvent-chain, solute-chain, and chain-

chain, and intramolecular contributions in the chains. There are also interactions between

all the molecules in the cell and both walls, and a spring-like interaction which attaches

the Cs chains to the wall. With the exception of the latter, all of the interactions are of

the Lennard-Jones (LJ) form, with the addition of Coulombic terms for the solvent-solvent

interactions.

For the purpose of our study, (and although we are aware that the molecular details of

the silica may not be unimportant), due to the lack of a generally available potential for silica

we have chosen to model the walls using an integrated 10-4 Lennard-Jones (LJ) potential

[31],

Cl

{z/Gyj -h C2 )

(
1

)

where Ci = 0.47140452 and C2 = 0.431335136 are constants, and Syj and are taken as

Soo and aoo of the water model. The neglect of the wall details is probably a reasonable

approximation for the relatively high surface coverage studied here and particularly for the

specific case of a nonpolar solute, which would not be expected to interact appreciably with

any exposed silanol groups. The Cg chains are modeled in the united-atom approximation,

including both bending and torsion (but not stretching), and a self interaction using the

Lennard Jones potential between sites more than 3 bonds apart [32]. The bending potential

is given by [33]

= \ce{9 - (2)

where ce/kb is 3.018846 x 10^ K/rad^ and 9o = 109.5°. The torsional potential acts on 5 sets

of 4 sites within a Cs chain, and is given by [32]

[/‘-*{0) = ^ct(cos0)*,
A:=0

(3)
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where </> is the dihedral angle defined so that (/> = 0 corresponds to the trans configuration,

and the constants Ck are CQ/ki = 1.116 x 10^ K, ci/ki, = 1.462 x 10^ K, 02/k^ = —1.578 x 10^

K, cz/h = -3.68 X 10^ K, c^/kb = 3.156 x 10^ K, and Cz/h = -3.788 x 10^ K. The
intramolecular forces arising from the torsional interaction acting on contiguous sites 2

, j, A:,

and / have been derived following the development of Bekker, et al., [34],

where

.tors T7 TTtors dtp

^ # dvi'
(4)

(j) = sign((/)) cos“^(R ” S) (5)

R = Tij - (ri, Tkj)ikj (6)

S = Tik- {Vik • Tkj)Tkj (7)

II -J 1 II -J

(8)

and where sign((/)) is the sign of the quantity • n. In the above equations, R and S are

vectors normal to Tkj in the planes defined by the positions of sites 2
, j, k, and j, k, /,

respectively. The vectors m and n are normal to the planes defined by sites z, j, k and j,k^

/, and have the same direction when sites z, j, k, and I are coplanar:

m = Tij X Tkj (9)

n = Tkj X Tik. (10)

With the above definitions, and using the fact that Ff + Fj + + F; = 0, the torsional

forces are given by [34]

Fi =

F, =

Ffc =

m
Tkjm • m

n

-F,+

-F, -

,, -rkj
dq) n • n

'^ij '^kj

kj

Tkj

F,:-

F,+
kj

(^)
(
rki-ikj \

V ^kj )

F,

F,

(
11

)

(12)

(13)

(14)

The chains are fixed to the wall with an arbitrary spring potential having a stiff constant,

acting between a position approximately 3 A from the wall and the first site of the chain, ri.

uspr>n, ^ - r„)^ (15)

with Cspringikb = 2.27 X 10^ K/A^. In an attempt to mimic the assumed roughness of the

surface of the silica pore, the chains are allowed to move freely in the x, y, and z directions

for about 0.5 - 1 ps before fixing the locations of the end sites at Tq. The resulting positions

of To were within 3 ± 1.5 A from the wall.

For the solvent water, we adopt the SPC potential [35], for methanol the potential pa-

rameters of van Leeuwen [36], and for acetonitrile the model of Edwards et al [37]. The

parameters for the intermolecular potentials are collected in Tables I and II. For unlike sites.
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Table I: Geometrical parameters for molecular models

molecule bond length (nm) bond-angle degrees

SPC water 0-H 0.1008 HOH 109.47

LI methanol C-0 0.14246 COH 108.53

0-H 0.09451

acetonitrile CH3-C 0.146

C-N 0.117

Cs C-C 0.153 CCC 115.0

Table II: Pair potential parameters

molecule group a (nm) s/h (K) q

SPC water 0 0.3166 77.92 -0.820

H 0 0 0.410

LI methanol 0 0.303 86.5 -0.700

CH 3 0.3740 105.2 0.265

H 0.00 0.000 0.435

acetonitrile CHs 0.360 191.0 0.269

C 0.340 50.0 0.129

N 0.330 50.0 -0.398

Cs CH„ 0.396 72.9558 0.000
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the Lennard-Jones parameters are obtained via the usual Lorentz-Berthelot combining rules,

he., (7ai3 = {cTa + and

The system contained a total of 500 solvent molecules and 50 Cs chains, of half of which

are attached to each wall. The equations of motion were solved using non-iterative constraint

dynamics [38] with the Beeman algorithm [39] and a Nose-Hoover thermostat [40] to control

the temperature.

2.1 Technical Issues

In Coulombic systems having broken symmetry in one direction, it has been shown that

the use of the usual formulation of the Ewald sum for 3-dimensional periodicity (3DP) is

inappropriate [41, 42]. This is true because use of the 3DP formulation in a system having 2D
periodicity in the x and y directions, but which is finite in the z direction, would introduce

spurious effects of charge layers perpendicular to the z direction which are not part of the

system. Thus, in order to rigorously deal with the long-ranged Coulombic interactions in such

a system, an alternate Ewald-like method must be used. A recent review of some of these

approaches can be found in reference [43]. Generally, a particular method is computationally

feasible within only a rather narrow geometric arrangement of the charges. Outside of this

range, the methods either contain singularities or begin to converge very slowly. For instance,

the recent method of Hautman and Klein [44] converges slowly for a given x — y-direction

side length L when zjL becomes large {i.e. close to 1). This particular method also depends

on inverse powers of the x — y distance 5, which can also cause numerical difficulties when
two charges are stacked in the ^-direction. An alternative approach derived by Leckner

[45] appears to contain singularities when two of the three coordinate distances approach

zero. A method which does not suffer from charge geometry convergence problems has been

proposed by Heyes ei al. [46]. However, because of a complicated z dependence in the Fourier

part, this formulation is exceedingly slow. No particular method has emerged as clearly the

best approach for the general simulation. We have chosen to use the method proposed by

Rhee et al. [41], which combines an Ewald-like sum with a multi-pole expansion in the z

direction. Although this method unfortunately suffers from one of the same problems as

does the Hautman-Klein method, i.e., poor accuracy when the z separation becomes larger

than L, it has an advantage over the latter in that it does not depend on inverse powers of s.

Both the Rhee et al. and the Hautman-Klein methods enjoy a further numerical advantage

by eliminating the z dependence in the Fourier part of the sum, allowing it to be factored.

Relative to the usual 3DP Ewald sum, however, the computational requirements for the

Rhee et al. method (as well as the others) are increased by, at the least, approximately an

order of magnitude, in the present case because of the necessity of including the layer of cells

around the central cell in the real-space sum. For the sake of completeness, we include in the

Appendix the expressions for the Coulombic energy and force for the multi-site molecular

case, and derive expressions for the pressure tensor in both the ‘atomic’ and ‘molecular’

frameworks.

2.2 Numerical Accuracy of Coulombic Interactions

Although the use of the above Ewald sum is numerically expensive, neglect of the long-ranged

forces can have a large effect on the accuracy of the Coulombic contribution to the forces. In

Figure 1, we compare the accuracy in the forces for two different schemes: spherical cutoff
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site index

Figure 1: Error in Coulombic contribution to site-site forces with spherical cutoff (TOP) vs.

Ewald sum (ly = 1) (BOTTOM) in the x (O), y (f^), and 2
:
(A) directions for a typical

configuration in the water/Cs system.

based on site-site minimum image (MI) distances, and the Rhee et al Ewald formulation

with a real-space MI site-site cutoff at i/c = T {i-e., nine cells in the real-space sum) and

a/L = 0.1. The forces are normalized to the essentially exact results found when i/c
= 2.

The results are shown for a snapshot configuration from the pure water system, where the

effective ration of Lz to L is about 0.92 due to the exclusion of water from near the walls

by the hydrocarbon chains. In both cases, the contribution to the forces from the multipole

expansion is included. The average absolute errors in the forces with the Ewald sum (vc = 1)

are 0.72 %, 0.73 % and 0.65 % for the x, y, and 2: directions. The corresponding errors for

spherical cutoff are very large: 33 %, 31 % and 20 %.

2.3 Parallelization

An analysis of the 2DP Ewald sum given in the Appendix reveals that the ordinary time-

saving applications of the neighbor-list and/or link-cells [47] cannot be used, a consequence

of the fact that no intermolecular cutoff length can be invoked in the evaluation of the

real-space part of the Ewald sum without introducing convergence problems. Furthermore,

the necessity of including an additional layer of images around the central cell, i.e., 9 more

cells, means that the computational requirements are much higher with the present method

as compared to the 3DP Ewald sum. In fact, in order to make the computations feasible

on presently available machines, the code must be parallelized. Because we are dealing, at

present, with relatively small system sizes, and the problem is simply to speed the code, the

so-called ‘data-replication’ scheme is used rather than a domain decomposition. The former

involves distribution of the work-load to the various processors, then a global summation of

the data at the end of each time-step. In practice, only the force calculation needs to be
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parallelized since it accounts for more than 90 % of the work. The routine for calculating

the intermolecular forces also calculates the intermolecular potential energy and pressure

contributions.

Calculation of the real-space part of the Ewald sum and the short-ranged LJ pair inter-

actions involves a double loop over N molecules i and j, which takes most of the CPU time

for the forces:

DO I = 1,N-1

DO J = I+1,N

calculate pair potentials and pair forces...

ENDDO

ENDDO

The total number of interactions which must be considered in this double loop is A^(A^ — 1)/2.

If the outer loop over i is broken down into say, K — A chunks of equal size, then the number
of interactions considered by the A:th chunk is ^{N + {k — 1)^) — The total sum of

the interactions considered by chunks (A: — 1) + (A: = 4) will equal the sum of interactions

in chunks (A: = 2) + (A: = 3), so with 4 chunks the total work in the double loop over i and

j can be divided exactly over Np = 2 processors, and in general over Np = K/2 processors,

as long as N/K is an even integer. The same load-balancing scheme can be modified for use

with arbitrary number of processors and arbitrary N, dividing the ‘left-over’ work over some

of the processors.

The work done in calculating the reciprocal space terms in the Ewald sum, which accounts

for a significant portion of the total CPU time for the forces, is straightforwardly load-

balanced by simply dividing the loop over the reciprocal lattice vectors h into Np equal-sized

chunks assigned to each processor. In both real and reciprocal calculations, a global sum of

the pair forces, energies, virials, etc. must be made at each time-step of the simulation. This

is an unavoidable message-passing overhead which effectively limits the number of processors

which can be utilized to about 10 for the system sizes considered in this work.

The message passing interface (MPI) library was used in the global summation of the

forces, energies, etc. in order to allow portability to various architectures. From the timings

for various numbers of processors on an IBM SP2 (at NIST), shown in Figure 2, it can be

seen that nearly linear speed-up is obtained for up to 10 processors. Above this number,

message-passing overhead begins to dominate the timings.

3 Free Energy Profile

The change in free energy of a solute as it experiences different microenvironments in a

RPLC column is the basic driving force in the retention process. In this way, the solute

acts as a probe to determine whether the retention is primarily driven by solute-solvent

interactions or interactions between the solute and the stationary phase, and whether the

process is primarily an interfacial one or if it resembles a bulk partitioning process. The
simulation results of Klatte and Beck [30] suggest, at least for small, spherical, non-polar

solutes that the process is largely interfacial. For non-spherical solutes, free energy profiles

obtained from MD simulations can be used to test ideas such as the slot model [48] and the

effects of stationary-phase surface coverage on the partioning. The information we seek is

the change in free energy, in this case the residual Helmholtz free energy, of a solute at

infinite dilution in the model RPLC system, as a function of distance along the 2: coordinate.
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Figure 2: Wall-clock time needed to integrate through 100 timesteps using different numbers

of processors, for the system of 500 water molecules with 50 Cg chains.

The 2: dependence of the Helmholtz free energy could be calculated from the 2 dependence

of the partition function,

= -hT\nQ{z), (16)

and then relating the 2-dependence of the partition function to the probability of finding the

solute at a specific 2 position within the simulation cell. However, such an approach would

suffer from extremely poor statistics since the range of possible 2 values is large and we have

only one solute molecule. To overcome this problem, we adopt a commonly used umbrella

sampling scheme [49] where the position of the solute is constrained to lie within a certain

window of 2 values. In this case, the configurational energy of the solute is due to solute-

solvent, solute-chain, and solute-wall interactions, plus the well potential. The 2—position

of the solute is constrained to lie within a narrow range of 2 by applying a well potential to

the the center of mass or a site near the center of the molecule,

(17)

with arbitrarily chosen values = 0.7675A and Ez/kb = 8.553 x 10^ K. The solute is then

allowed translational freedom in the x and y directions as well as rotational freedom. Within

the window, the 2—dependent free energy is

-kbT\nQ{z)

—kbTln
^_pU^eU(^z;Zo) ^-PU{rix,riy,z,f2

-hTInPiz) - hTlnQ + [/"'“(z; 2„),

• • dfff

(18)
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Table III: State point and configurational energy

System No ^chain L (nm) Lz (nm) T{K) P (MPa)“ (kJ/mol)“ t" (ps)

ACN 154 346 50 2.855 4.789 305.9 83(3) -36.1(1) 403

MeOH 154 346 50 2.855 4.544 298.0 -2(3) -36.6(1) 371

Water 0 500 50 2.855 3.838 298.0 18(5) -37.5(1) 258

“Standard uncertainty in last digit given in parentheses.

^Simulation length.

Table IV: Conditions at center of pore

System Po (g/cm^) Pyj (g/cm^) P (MPa) rj.a
'^0

ACN 0.252 0.692 80 0.138

MeOH 0.297 0.633 24 0.209

Water — 1.011 61 —

where P{z) is the probability of finding the solute at a position 2: within the window. Since

we are only concerned with changes in with 2: we can ignore the term k^T In Q in the

last equation since it does not depend on 2:. In practice, is calculated for a number

of contiguous windows. The total free energy profile is then constructed by requiring the

free energy to be the same at the overlap between two windows.

4 Results and Discussion

Table III lists the relevant details of the simulations and some of the computed thermody-

namic properties at the center of the slit pore are given in Table IV. No attempt has been

made to include long-ranged corrections to the Lennard-Jones contributions for any of the

computed properties.
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Z (A)

Figure 3: Number density of oxygen (solid line) and hydrogen (dotted line) as a function of

z for the pure water system.

z(A)

Figure 4: Number density for methanol (bold lines) and water (thin lines) as a function of

z for the methanol/water system. CH3 (dot-dashed), O (solid), and H (dotted).
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0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0

Z(A)

Figure 5: Number density for acetonitrile (bold lines) and water (thin lines) as a function of

z for the acetonitrile/water system. CH3 (dot-dashed), C (solid), and N (dotted).

z(A)

Figure 6 : Total density of LJ interaction sites as a function of z for the pure water system

(A), methanol/water sytem (B), and acetonitrile/water sytem (C).
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Figure 7: Energy density from various sources as a function of 2: for the pure water system.

Top: LJ, Middle: chain-chain, Bottom: real-space + multipole part of Coulombic. These

values were computed using a bin width of 0.7675 A, giving a volume of each slice of 0.62563

nm^. Unlike pair energies between molecules i and j are normalized by the total moles of i

+ j. Like pair energies are normalized by the total moles of i.
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4.1 Density profiles

The site density profiles have been computed using a bin width of 0.07675 A and are shown in

Figures 3 - 5 for the three different systems. In the pure water system, the interface between

the water and alkyl chain phases is fairly sharp although there is some degree of penetration

of the water (u;) into the nonpolar phase by about 5 A. Unlike the case of a hard or rigid

wall [50, 51, 52, 53], where large density fluctuations are seen in the water density near the

interface, the present results show a relatively flat profile with the water quicky reaching its

bulk density (~ 1.0 g/cm^). This behavior is similar to that seen at the interface between

water and a bulk hydrocarbon liquid [54], and is likely due to a “smearing-out” effect of the

water density profile due to undulatory fluctuations in the surface of the hydrocarbon phase

[55, 56]. A slight separation in the H and O profiles can also be seen, which indicates the

existence of some degree of orientational ordering of the water molecules near the interface.

In the mixed solvent systems, there is a striking segregation of the organic (o) component

at the interface. This build-up of the organic component excludes water from the interface,

as shown by the location of the Gibbs dividing surface zc, defined by the condition

r^G rzc

/
pvj{z)dz = - {Pw{z) - Pw,c)dz, (19)

Jo Jzc

where pyj is the number density of water and p^^c is the density of the water at the cen-

ter of the pore, zc- The values of zq are 10.2 A, 12.6 A, and 14.7 A for the pure water,

methanol/water, and acetonitrile/water systems, respectively. In the water/methanol sys-

tem, the alcohol concentration near the chain surfaces is nearly twice its value in the bulk.

One can also clearly see a preferential orientation of the methanol in this region, as has been

previously noted [30], with the methyl group pointing toward the hydrocarbon phase while

the hydroxyl group maximizes its H-bonding interactions with the water. The layering of

the organic phase near the interfaces is qualitatively similar in the acetonitrile/water system,

where it is even more pronounced. Here the peak interfacial concentration of acetonitrile

exceeds twice the value near the center of the pore. Both the acetonitrile and the methanol

penetrate into the hydrocarbon phase to approximately the same degree, with primary and

secondary peaks in the densities occuring at the surface and several A into the surface. Un-

like the methanol/water system, where the presence of the methanol tends to pull some of

the water into the hydrocarbon phase, in the acetonitrile/water system interfacial acetoni-

trile tends to exclude water from the interface because of the much weaker acetonitrile-water

interactions. Additionally, the density profiles for acetonitrile do not indicate a significant

amount of orientational ordering of the acetonitrile molecules at the interface.

The total site number densities along the z coordinate (Figure 6) reveal a sharp interface

in the pure water system which becomes less sharp in the water/methanol system and is

quite diffuse in the acetonitrile/water system. These data also indicate the presence of small

density peaks due to alkyl chain layering.

4.2 Energy profiles

In figures 7 - 9 we plot the pairwise energy contributions from the LJ, Coulombic, and in-

tramolecular interactions as a function of distance along the 2 coordinate. The intra and

intermolecular chain-chain interactions reflect the tendency for the sites of the chains to

arrange into two loosely defined layers at a position near the wall, where the first sites of

the chains are constrained via the spring interaction, and at a distance 3 A to 4 A from
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Figure 8: Energy density from various sources as a function of 2: for the methanol/water

system, (see Legend for Figure 7)

the interface. This type of layering in the hydrocarbon phase has also been seen in Cis

stationary phases [30], and is expected to present a free energy barrier which to some degree

inhibits penetration into the hydrocarbon phase by a solute. The interaction between the

water and the alkyl chains is weak and appears to be diminished by the presence of the

organic components. In all three systems, the water-water interactions are characterized by

a balance between the Coulombic attraction of the hydrogen bonding and the overlap LJ

00 energy. In the pure water system, the total configurational energy at the center of the

pore is -41.1 kJ/mol, which is close to the value for bulk SPC water. The repulsive LJ 00
interaction for the methanol-water pairs is partially offset by attractive dispersion between

the water oxygen and the methyl group. The methanol-water interaction is largely domi-

nated by hydrogen bonding, while the much weaker acetonitrile-water interaction appears

to be dominated slightly by dispersion interactions and weak Coulombic interactions. The

methanol-methanol energies are characterized by a combination of hydrogen-bonding with

some dispersion interactions while in the acetonitrile-acetonitrile interactions both dispersion

and Coulombic interactions appear to play equally important roles. The more pronounced

layering of the organic co-solvent in the acetonitrile/water system is therefore due to both

weaker acetonitrile-water interactions and stronger acetonitrile-chain interactions, the lat-

ter being about twice the magnitude of the corresponding methanol-chain pairwise energies.

These results are in agreement with previous notions concerning differences between acetoni-

trile/water and methanol/water mobile phases in the solvation of the stationary phase by the

organic component [13]. However, we note that with the present mostly aqueous solvents,

the organic component cannot be said to solvate the alkyl chains to any appreciable extent.

Instead, there is considerable wetting of the alkyl chain surface by the organic co-solvent,

although solvation is to be expected with mobile phases which are organic-rich [13, 14].
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Figure 9: Energy density from various sources as a function of z for the acetonitrile/water

system, (see Legend for Figure 7)
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Z(A)

Figure 10: Components of the pressure tensor as a function of 2: distance for the

methanol/water sytem (TOP), acetonitrile/water system (MIDDLE) and pure water sys-

tem (BOTTOM).

4.3 Pressure profiles

The diagonal components of the pressure tensor are plotted as a function of 2: in Figure 10.

In principle, if bulk-like behavior were observed on both sides of the interface, one could

use these data to calculate a surface tension at the water/chain interface, information which

would be of relevance to the solute transfer mechanism [9, 14]. However, although bulk-like

behavior is seen in the center of the pore, where ~ Pyy ~ Pzz^ this is not the case

in the alkyl chain phase due to both the effects of the interface as well as wall and spring

interactions with the chains. In any case, the statistical noise in the data prevents all but the

qualitative observation that the surface tension decreases in the order of the water, methanol,

acetonitrile systems.

4.4 Chain structure

An important question related to the retention mechanism in RPLC is the effect of different

mobile phases on the ordering of the stationary phase. The expectation has been that dis-

ordered or folded states predominate with poor chain solvents such as water, while solvation

of the chains with an organic component favors chain extension and ordering [26, 57, 58].

Three quantities which give a measure of the chain structure from the simulations are the

distribution of the angle x, defined as

cosx = ri8 -z. (
20 )
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Figure 11: Probability density of chain-wall normal angle (TOP) and chain end-end distance

(BOTTOM) for different systems.

where rig = rg — ri and z is a unit normal to the wall, the distribution of the end-end

distance of the alkyl chains, and the center of mass of the hydrocarbon layer,

r^c / fzc
(z) = zps{z)dz / ps{z)dz, (21)

where Ps{z) is the total number density of the methyl sites of the chains. The distributions

are compared in Figure 11 for the three systems. We note first that the values of x are

bimodally distributed with a tendency for the chains to either extend away from the surface

or to lie nearly flat in an orientation parallel to the walls. Apparently, the interaction of the

chains with the wall potential begins to predominate when the chains begin to lie close to the

wall. Given the rather limited flexibility in Cg chains there is little difference in the results

for the different systems, particularly since the hydrophobic nature of the solvent has not

changed greatly among the three systems. The statistically indistinguishable values of (z)

support this observation, being 5.92 A, 5.97 A, and 6.00 A for the water, acetonitrile/water,

and methanol/water sytems, respectively. From the distributions of x, we can tentatively

conclude that the occurrence of nearly straight chains perpendicular to the walls is slightly

diminished in the pure water systems relative to the others. Such distinctions are likely to be

much more pronounced in systems having longer alkyl chains such as Cig. We are currently

performing a detailed analysis of the effect of solvent composition on the Cig conformational

order. Interestingly, Sander et al [26], using infrared spectrometry, found marked differences

in the Cig alkyl chain conformation for dry RPLC packings compared to those in the presence

of mobile phase. However, they did not detect any significant changes in the IR spectra with

mobile phase compositions in organic-rich (70 % to 100 %) methanol/water solutions.

The Tend-end distribution is also bimodal with a peak at about 8.9 A corresponding to

the nearly all-trans configuration. The broad distribution in Vend-end indicates numerous

gauche defects in the majority of the chains. For Cg chains at a surface concentration of
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about 5.1 /xmol/m^ in an environment of pure water and in water-rich aqueous methanol

and aqueous acetonitrile, the overall picture is one in which the chains are largely disordered

with some lying flat against the surface, while the majority are oriented with x greater than

about 60°. The presence of 30 mole % methanol or acetonitrile changes this picture only

slightly (compared to the pure water system), with some evidence for a small increase in

chain extension.

4.5 Solvent orientation

The average orientation of the solvent as a function of distance in the 2 direction has been

examined by deflning

cosp = d-z, cosj = b'Z, (22)

where d is the unit dipole vector and 5 is a unit bond vector pointing from the oxygen to

the methyl group on a methanol molecule. 2 is a unit normal to the wall pointing in the

positive direction so that the functions cos j3z and cos 7(2) are expected to be rotationally

symmetric about zc- These results are plotted in Figure 12. In the center, the averages of

both cos/? and cosy are zero, indicating no preferential orientation of the molecules with

respect to the walls. The data become noisier near the ends where the statistics become

worse. For the pure water system, the orientation of the water dipole moments near the

surface of the hydrocarbon phase is nearly identical with the results for the free interface of

pure water [59]. In this case, the sign of cos/? changes at the location of the Gibbs dividing

surface, where there is a slight tendency for orientations of the dipole moment toward the

bulk for z > zq while the reverse is true for z < zq. For the mixed-solvent systems, the

water dipole moment points more toward the bulk, on average, on both sides of the Gibbs

dividing surface in the methanol/water system. This behavior is similar to that seen for free

surfaces of water in the presence of sub-monolayer coverages of phenol [59]. The water in

the acetonitrile/water system shows qualitatively different behavior, with the orientation of

the water dipole moments being always toward the walls, with the possible exception of the

most deeply penetrating water.

The onset of orientational preference of the methanol begins when the number density

starts to increase near the interface. These results show that the alignment of the methyl-

oxygen bond with the 2 axis becomes more and more pronounced as the methanol penetrates

deeper into the alkyl chains. The behavior of the acetonitrile molecules is more complex.

There appears to be little orientational preference of the acetonitrile molecules either in

the bulk or within the organic-rich surface layers. Near the inner edges of these layers, the

molecules tend to orient their methyl groups toward the walls, while near the outer edges of

these layers, the molecules tend to point their methyl groups toward the water-rich center,

which seems to be a counterintuitive result.

4.6 Free energy profile

The residual Helmholtz free energy profile of a methane solute (a = 0.373 nm, ejkt = 147.5

K) in the acetonitrile/water system has been estimated using equation (18) by performing

a series of simulations with the starting configuration taken from the ending configuration

of the acetonitrile/water simulation discussed above. Two solutes were utilized in each

simulation, one constrained via equation (17) at a position 2o while the other was constrained

to be at 1/ — 2o. A total of 11 simulations of lengths > 90 ps were run, with the results from

19



0.2

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

z(A)

Figure 12: Average dipole-wall and bond vector-wall angles as a function of distance in the

2: direction, pure water (A), methanol/water (B), and acetonitrile/water (C) systems.

each 2: window being shifted so that the endpoints of a window matched the endpoints

of the neighboring windows. These results are displayed in Figure 13 for the solute at 2:0

(solid line) and at L — 2:0 (dotted line), along with the full density profile for comparison.

The qualitative behavior of both solutes is similar, although they do not follow exactly the

same path, (particularly when the solute resides in the hydrocarbon phase), and there is

considerable noise in the results. We can, however, note several features of these free energy

profile estimates. In particular, there appears to be a small free energy barrier at about

2: = 17A, corresponding to the position of the outer edge of the acetonitrile-rich layer at

the hydrocarbon surface, a finding which is similar to that seen by Klatte and Beck in the

methanol/water system at the same bulk mole fraction of organic co-solvent [30]. Once the

solute enters the acetonitrile-rich layer at the interface, the free energy drops continuously.

At the location of the second acetonitrile peak at about 8 A from the wall, the results

for the two different solutes are ambiguous, as the free energy continues to drop for one

while leveling off for the other solute. In any case, a substantial portion of the total free

energy driving force for a methane solute in the acetonitrile system occurs in the organic-

rich layer adsorbed to the hydrocarbon phase, a result which is quite similar to that found

previously for a methanol/water/Cis system. On the basis of the present results, we are

therefore unable to identify any distinctly different behavior of a simple spherical solute

in the acetonitrile/water system as compared to the methanol/water system, at least at

the current composition conditions. We are currently planning investigations of free energy

profiles for molecular solutes, such as benzene, with concurrent estimates of the solute energy

and entropy profiles as well.
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Figure 13: (TOP) Change in residual Helmholtz free energy of a methane solute with position

along the 2 coordinate. (BOTTOM) Full density profiles for the acetonitrile/water system.

(See legend to figure 3)

5 Conclusions

In this report we have outlined a molecular dynamics model for the study of interphases

in reversed phase liquid chromatography using molecular dynamics simulation. The ap-

proach adopted here is one in which the model system is somewhat idealized but, we believe,

still captures the essential features of the real system. Further, we have treated the long-

ranged electrostatic interactions rigorously with an Ewald sum and derived expressions for

the Coulombic contribution to the pressure tensor. The use of an Ewald sum to rigorously

deal with the long-ranged Coulombic interactions is very expensive computationally. How-

ever, spherical truncation of these interactions can have a significant effect on the computed

results. This effect is illustrated in Figure 14, in which the density profiles are compared in

the methanol/water system for the Ewald sum and for spherical cutoff based on center-of-

mass distances. For the latter case, the sharpness of the interface is underestimated while

the layering of the methanol is overestimated.

Some features of the model system remain arbitrary, such as the parameters and form

of the wall potential and the chain linkage to the wall. However, these simplifications are

likely to have little impact on the calculation of the solute free energy profiles, which give a

detailed picture of the driving forces behind the retention process.
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6 Appendix

The Coulombic energy is given by a sum of real-space, reciprocal-space, constant, self, and

multipole energies, = Ur + Up + Ucons + Ugeij + Um where
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where Qia is the dimensionless fractional charge on site a of molecule i, L = Lx = Ly, A =
z/ is a lattice vector, i/c is the lattice vector cutoff, Jq is the zeroth order Bessel function of

the first kind [60], and G are reciprocal lattice vectors in the x — y plane. In the above

equations the factor l/47reo has been omitted, s and z are the x — y and z components of

the positions. The forces are obtained straightforwardly by differentiation:
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and Ji is the first order Bessel function of the first kind [60]. In practice, the Bessel functions

Jo and Ji are computed using polynomial representations found in reference [61]. After

choosing an appropriate value for the convergence parameter a, the functions Fi and F2 are

tabulated and their values interpolated linearly during the program execution.

In the molecular formulation, the Coulombic contribution to the pressure tensor is given

by == + P^ + P’^ + where, following the development in the 3DP formulation

of Nose and Klein [62] and Brown and Neyertz, [63], we have, for the {a, 0) component
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where 6^/3 is the Kronecker delta.

The atomic formulation of the pressure tensor includes the intramolecular forces, and its

Coulombic contribution is the same as the molecular pressure tensor, with {Rij^u)a and (Rij)a

replaced by (rijj^^i,)a and and dropping the second term in P^. Furthermore, by

symmetry, the off-diagonal terms in and in the second term of P^ are zero.

For spherical ions, we also have the well-known result that P^ = |Tr(P‘^) = ^(P^),
which provides a convenient check for the above expressions. A test calculation of 256 KCl

ions yielded agreement in the last expression to within numerical error.

The total pressure tensor in the ‘atomic’ framework is given by

p P^ -(- _|_
p^ors -pbend -pLJ^ntra TTkConstraint

(41)

where P^*^ is the intermolecular contribution due to Lennard-Jones interactions, P^^^, -pbend^

and are contributions from the intramolecular potential of the chains,
^^^onstramt

jg

the constraint force contribution, and P^°^^ and are contributions from the wall and

the spring attached to the first site of the Cg chains.
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